

International Journal of Homoeopathic Sciences

E-ISSN: 2616-4493
P-ISSN: 2616-4485
Impact Factor (RJIF): 5.96
www.homoeopathicjournal.com
IJHS 2026; 10(1): 163-167
Received: 11-10-2025
Accepted: 13-11-2025

Dr. Sabitha NM
MD Scholar, Department of Homoeopathic Pharmacy, Government Homoeopathic Medical College and Hospital, Bhopal, Madhya Pradesh, India

Dr. Sandeep Agrawal
MD (Hom.), Professor, Department of Anatomy, Government Homoeopathic Medical College and Hospital, Bhopal, Madhya Pradesh, India

Pharmacognostical, phytochemical and pharmacological profile of *Calendula officinalis* L.: A review

Sabitha NM and Sandeep Agrawal

DOI: <https://www.doi.org/10.33545/26164485.2026.v10.i1.C.2181>

Abstract

Calendula officinalis L., commonly known as marigold, is an important medicinal plant widely used in the homoeopathic system of medicine for the management of wounds, inflammatory conditions, and various skin and mucosal disorders. Numerous studies have investigated its phytochemical composition, revealing the presence of bioactive constituents such as flavonoids, triterpenoids, carotenoids, essential oils, and phenolic compounds. Experimental and pharmacological studies reported in the literature indicate that *Calendula officinalis* exhibits a broad spectrum of biological activities, including anti-inflammatory, antimicrobial, antioxidant, immunomodulatory, and wound-healing effects. These findings provide scientific support for its therapeutic applications. Although experimental data exist, further focused and systematic research is necessary to validate these effects in homoeopathic medicine.

Keywords: *Calendula officinalis*, homoeopathy, phytochemical constituents, pharmacology, wound healing

Introduction

Calendula officinalis L. commonly known as garden marigold, is a well-established medicinal plant extensively used in traditional medicine, herbal formulations, and homoeopathic practice. In homoeopathy, *Calendula officinalis* is primarily valued for its action on wounds, ulcers, burns, and inflammatory conditions, particularly in the form of mother tincture and lower potencies. Owing to its long history of therapeutic use, the plant has attracted significant scientific interest, leading to extensive phytochemical investigations and pharmacological evaluations [1, 2].

Phytochemical studies have revealed that *Calendula officinalis* contains a diverse array of bioactive constituents, including triterpenoids, flavonoids, coumarins, quinones, and fat-soluble vitamins. Experimental studies employing isolated compounds and crude extracts have reported a wide range of biological activities such as anti-inflammatory, antioxidant, antimicrobial, and wound-healing effects [3-5].

This comprehensive review analyses the major phytoconstituents of *C. officinalis*, their reported pharmacological activities, and available homoeopathic research to provide a balanced scientific overview.

Pharmacognostical Profile of *Calendula officinalis* L

Taxonomic features [6]

- **Kingdom:** Plantae
- **Division:** Magnoliophyta (Angiosperms)
- **Class:** Magnoliopsida (Dicotyledons)
- **Order:** Asterales
- **Family:** Asteraceae (Compositae)
- **Subfamily:** Asteroideae
- **Genus:** *Calendula*
- **Species:** *officinalis*

Corresponding Author:

Dr. Sabitha NM
MD Scholar, Department of Homoeopathic Pharmacy, Government Homoeopathic Medical College and Hospital, Bhopal, Madhya Pradesh, India

Common Names [7]

- **Hindi:** Zerzul
- **English:** Garden Marigold
- **French:** Fleur de tous les mois
- **German:** Ringelblume

Calendula officinalis L. is an annual herb growing up to 30–60 cm in height. The plant bears thickish, oblong to lanceolate leaves with entire margins and a hispid surface due to short hairs. The stem is green, striated, succulent, pubescent, and profusely branched. Flowers occur as large, yellow to orange, terminal and solitary capitula, usually blooming from March to May. The root system is fibrous and pale yellow in colour. The plant is widely cultivated throughout India, and the fresh flowering tops and leaves constitute the medicinally used parts [7, 8].

Microscopical examination of the corolla shows elongated epidermal cells with a striated cuticle and underlying parenchyma containing yellow oil globules and chromoplasts. Few long non-glandular, multicellular hairs are present near the corolla tube. Fibro-vascular strands with annular and spiral tracheae and characteristic spinose, three-pored pollen grains are also observed [7].

According to the Homoeopathic Pharmacopoeia of India (HPI), *Calendula officinalis* is classified under Class I in the Old Method, whereas the New Method follows a drug strength of 1/10.

The mother tincture of *Calendula officinalis* (Ø) should comply with the following physicochemical standards:

- **Alcohol content:** 38 to 42 % v/v
- **pH:** 5.1 to 6.1
- **Wt. Per ml:** 0.9933 g to 0.970 g
- **Total solids:** Not less than 1.8 % w/v
- **λ max:** 256 and 290 nm

TLC performed with chloroform: methanol (8:2 v/v) as mobile phase and iodine vapour for visualization reveals three diagnostic spots at Rf 0.03, 0.11 and 0.98 [7].

Phytochemical Constituents and Pharmacological Activities

Calendula officinalis contains diverse bioactive

phytoconstituents comprising triterpenoids, flavonoids, coumarins and lipid-soluble compounds, many of which contribute to its traditional and pharmacological uses in inflammation and wound healing. Triterpenoids like lupeol, erythrodiol and calendulosides predominate in flowers and exhibit strong anti-inflammatory and antioxidant effects in preclinical models. Flavonoid glycosides such as isoquercitrin, rutin and quercetin further enhance these properties through reactive oxygen species scavenging and cytokine modulation [Table 1].

Triterpenoids [9-12]

Lupeol, a pentacyclic triterpenoid in calendula flowers, shows anti-inflammatory, antimicrobial and anticancer activities in multiple *in vitro* and *in vivo* studies. Erythrodiol, another triterpenoid alcohol, provides antioxidant and anti-proliferative benefits consistent with triterpene pharmacology. Calendulosides A and B, oleanane-type glycosides, reduce skin oedema in animal models, supporting calendula's topical applications.

Flavonoids and Flavonol Glycosides [13-21]

Isoquercitrin and rutin, quercetin-based glycosides, act as potent antioxidants and anti-inflammatories by neutralizing free radicals and inhibiting inflammatory pathways. Quercetin and isorhamnetin, aglycone flavonols, offer cardioprotective and antiproliferative effects in preclinical research. Narcissin and calendoflavoside contribute similar radical-scavenging and bioactive flavonoid profiles.

Coumarins [22-26]

Coumarins like scopoletin, umbelliferone and esculetin demonstrate multi-target actions including antioxidant, anti-inflammatory and neuroprotective effects, with mechanisms involving cytokine suppression and apoptosis modulation.

Quinones and Vitamins [27-30]

Lipid-soluble components such as α -tocopherol protect against lipid peroxidation and inflammation. Plastoquinone aids plant stress responses via ROS quenching, while phylloquinone and ubiquinone (CoQ10) support coagulation, anti-inflammation and mitochondrial function.

Table 1: Major Phytoconstituents of *Calendula officinalis* L. and Their Reported Pharmacological Activities

Compound	Chemical Class	Key Pharmacological Activities	References
Lupeol	Pentacyclic triterpenoid	Anti-inflammatory, antimicrobial, immunomodulatory, anticancer	[10]
Erythrodiol	Triterpenoid alcohol	Antioxidant, anti-inflammatory, anti-proliferative	[9]
Calendulosides A, B	Oleanane triterpene glycosides	Anti-inflammatory	[11]
Calendula glycosides A, B	Oleanane triterpene glycosides	Anti-inflammatory	[12]
Calendoflavoside	Flavonoid glycoside	Antioxidant, anti-inflammatory	[13]
Isoquercitrin	Flavonoid glycoside (quercetin-3-O-glucoside)	Antioxidant, anti-inflammatory, anti-oxidative stress	[14, 15]
Rutin	Flavonol glycoside	Antioxidant, anti-inflammatory, vaso-protective	[16]
Iisorhamnetin	Flavonol (aglycone)	Antioxidant, anti-inflammatory, anticancer	[17, 18]
Quercetin	Flavonol	Antioxidant, anti-inflammatory, cardioprotective, anticancer	[19, 20]
Narcissin	Flavonol glycoside (isorhamnetin-3-O-rutinoside)	Antioxidant (DPPH/ABTS), antiproliferative	[21]
Scopoletin	Coumarin (6-methoxy-7-hydroxycoumarin)	Antioxidant, anti-inflammatory, neuroprotective, anticancer	[22, 23]
Umbelliferone	Coumarin (7-hydroxycoumarin)	Antioxidant, anti-inflammatory, wound healing, antidiabetic	[24, 25]
Esculetin	Coumarin (6,7-dihydroxycoumarin)	Antioxidant, anti-inflammatory, hepatoprotective, antitumor, anti-diabetic	[26]
α -Tocopherol	Tocopherol (vitamin E)	Antioxidant (lipid peroxidation), anti-inflammatory	[27]
Plastoquinone	Quinone	Antioxidant (ROS scavenging), photosynthetic protection	[28]
Phylloquinone	Naphthoquinone (vitamin K1)	Coagulation, anti-inflammatory	[29]
Ubiquinone (CoQ10)	Quinone	Antioxidant, anti-inflammatory, mitochondrial support	[30]

Experimental and Clinical Studies in Homoeopathy

Experimental evidence from in vivo wound-healing studies indicates that *C. officinalis*, particularly in the 30C potency, demonstrates superior therapeutic efficacy when compared with other centesimal potencies such as 6C and 200C, as well as vehicle control. Oral administration of Calendula potencies in excisional wound models in Wistar rats resulted in enhanced wound contraction, increased epidermal thickness, improved collagen deposition, elevated Ki-67 expression, and favourable white blood cell responses, indicating accelerated tissue repair. Among the tested potencies, Calendula 30C consistently showed the most pronounced wound-healing response. The vehicle control, consisting of dispensing alcohol, exhibited no intrinsic therapeutic activity, confirming that the observed effects were attributable to the medicinal preparations rather than the solvent^[31].

A randomized trial tested *Calendula officinalis* tincture mouthwash (2 ml diluted in 6 ml water, twice daily) against placebo in 240 adults (20–40 years) with gingivitis over 6 months, measuring plaque index (PI), gingival index (GI), sulcus bleeding index (SBI), and OHI-S at baseline, 3 months, and 6 months. Before scaling at 3 months, Calendula significantly lowered PI, GI, and SBI ($P<0.05$), unlike placebo. Post-scaling, Calendula enhanced reductions more than placebo across all parameters ($P<0.05$), indicating its adjunctive value in plaque and gingivitis control^[32].

The study by Sahay et al. (2025) comparatively evaluated three homoeopathic preparations of *Calendula officinalis* mother tincture, including one in-house formulation and two commercially available products. The formulations were assessed for their antioxidant and antibacterial activities using spectrophotometric methods, DPPH radical scavenging assay, antimicrobial testing, and HPLC analysis. The results demonstrated that all samples exhibited measurable antioxidant and antibacterial properties; however, the in-house prepared tincture showed superior activity. This enhanced efficacy was attributed to a higher concentration of bioactive constituents, particularly quercetin, as confirmed by HPLC profiling. The lower IC_{50} value observed in the DPPH assay further indicated stronger antioxidant potential in the in-house sample^[33].

Pathak et al. conducted an in-vitro comparative evaluation of the antibacterial activity of *C. officinalis* in mother tincture and 30C potency against two clinically significant bacterial strains, *Staphylococcus aureus* and *Pseudomonas aeruginosa*. The preparations were formulated according to the Homoeopathic Pharmacopoeia of India using absolute alcohol. Antibacterial efficacy was assessed through Minimum Inhibitory Concentration (MIC) determination by the micro-broth dilution method and Zone of Inhibition (ZOI) measurement using the agar-well diffusion technique, with Amoxicillin serving as the standard reference drug. The findings revealed that both the mother tincture and 30C potency exhibited notable antibacterial activity against the tested organisms. Greater inhibitory effects were observed against *P. aeruginosa* compared to *S. aureus*. Notably, *C. officinalis* in 30C potency demonstrated superior growth inhibition of *P. aeruginosa* when compared with Amoxicillin. Overall, the study highlights the significant antibacterial potential of *C. officinalis*, with potency-dependent variations in activity^[34].

An HPTLC study compared a standard *Calendula officinalis* mother tincture with a pharmaceutical sample using a chloroform–methanol mobile phase on silica gel plates. The chromatographic profiles showed similar banding patterns and closely aligned spectral peaks under UV light, indicating the presence of comparable phytoconstituents such as amino acids, sterols, saponins, triterpenoids, and alkaloids^[35].

An in vitro study evaluated the effects of *C. officinalis* 3CH, low-level laser therapy (LLLT), and their combined application on wounded human skin fibroblasts. Cellular morphology, viability, and cytotoxicity were assessed to determine healing responses. The findings showed that *C. officinalis* 3CH enhanced wound repair by promoting faster wound closure and improving fibroblast viability. LLLT alone also accelerated wound closure in injured fibroblasts, while the combined treatment of laser irradiation followed by *C. officinalis* 3CH produced a normalizing effect on damaged cells. These results suggest that *C. officinalis* 3CH, particularly when used alongside LLLT, may support cellular processes involved in wound healing^[36].

In an in vitro study by Subramanian (2020), the antifungal activity of *C. officinalis* mother tincture (\emptyset) was evaluated against *Candida albicans* and other *Candida* species using the Kirby–Bauer disk diffusion and microbroth dilution (MIC) methods. *C. officinalis* \emptyset demonstrated fungistatic activity by inhibiting the growth of *C. albicans* and several non-albicans *Candida* strains, although its antifungal effect was moderate when compared to *Hydrastis canadensis* \emptyset and the standard antifungal agent Fluconazole.

The study further indicated that *C. officinalis* \emptyset performed more effectively in broth dilution assays than in diffusion methods, suggesting better antifungal activity under liquid culture conditions. When combined with *Hydrastis canadensis* \emptyset , *C. officinalis* \emptyset contributed to enhanced antifungal inhibition, indicating a possible synergistic effect in the combined formulation. However, resistance was observed in certain *Candida* strains, and the antifungal action of *C. officinalis* \emptyset remained fungistatic rather than fungicidal^[37].

A prospective randomized controlled trial at Safdarjung Hospital, New Delhi, compared *Calendula officinalis* dressing to povidone-iodine (Betadine) in 40 patients aged 15–60 with 5–20% thermal burns, randomly allocating 20 to each group and following them for 3 weeks. Although no overall statistical significance emerged, Calendula showed superior early healing. by day 14, 75% achieved $\geq 80\%$ epithelialisation (vs. 45% Betadine), 95% had no wound discharge (vs. 65%), and infection rates were lower. These results suggest Calendula supports faster epithelialisation and infection control in burn wounds, though larger studies are needed for definitive proof^[38].

In the agar diffusion assay, no inhibitory effect was observed against *Streptococcus mutans*, while only mild antibacterial activity was noted against *Enterococcus faecalis*. The MIC for *E. faecalis* was 16 mg/mL, higher than that of other tested tinctures, suggesting relatively limited antibacterial activity^[39].

Conclusion

Calendula officinalis possesses a well-defined pharmacognostical identity and authenticated phytochemical constituents, with pharmacopoeial standards ensuring quality and consistency. Available studies support its wound-healing and anti-inflammatory potential and suggest moderate fungistatic activity, particularly in mother tincture and lower potencies. However, variability in experimental outcomes indicates the need for further systematic and well-designed studies to strengthen its validation in homoeopathic practice.

References

1. Boericke W, Boericke OE. Homoeopathic materia medica with repertory comprising the characteristic and guiding symptoms of the remedies. 2nd ed. Savage RB, editor. Sittingbourne (UK): Homoeopathic Book Service; 1990.
2. Allen HC. Allen's keynotes: rearranged and classified.

New Delhi (India): B Jain; 2024. p. 76.

3. Muley BP, Khadabadi SS, Banarase NB. Phytochemical constituents and pharmacological activities of *Calendula officinalis* Linn (Asteraceae): a review. *Trop J Pharm Res* [Internet]. 2009;8(5). Available from: <http://dx.doi.org/10.4314/tjpr.v8i5.48090>
4. Arora D, Rani A, Sharma A. A review on phytochemistry and ethnopharmacological aspects of genus Calendula. *Pharmacogn Rev* [Internet]. 2013 [cited 2026 Jan 3];7(14):179–87. Available from: <https://www.phcogrev.com/article/2013/7/14/1041030973-7847120520>
5. Khalid K, Silva DA, Teixeira JA. Biology of *Calendula officinalis* Linn.: focus on pharmacology, biological activities and agronomic practices. *Med Aromat Plant Sci Biotechnol*. 2012;6:12–27.
6. Verma PK, Raina R, Agarwal S, Kaur H. Phytochemical ingredients and pharmacological potential of *Calendula officinalis* Linn. *Pharm Biomed Res*. 2018;4:1–7.
7. Homoeopathic Pharmacopoeia of India (HPI). Vol I–V. New Delhi (India): Government of India; 2016. p. 145.
8. Mandal PP, Banerjee DBM. A textbook of homoeopathic pharmacy. Kolkata (India); 2012.
9. Shahane K, Kshirsagar M, Tambe S, Jain D, Rout S, Ferreira MKM, et al. An updated review on the multifaceted therapeutic potential of *Calendula officinalis* L. *Pharmaceuticals (Basel)* [Internet]. 2023;16(4):611. Available from: <http://dx.doi.org/10.3390/ph16040611>
10. 9a. Sharma N, Palia P, Chaudhary A, Shalini, Verma K, Kumar I. A review on pharmacological activities of lupeol and its triterpene derivatives. *J Drug Deliv Ther* [Internet]. 2020 [cited 2026 Jan 2];10(5):325–32. Available from: <https://jddtonline.info/index.php/jddt/article/view/4280>
11. Ukiya M, Akihisa T, Yasukawa K, Tokuda H, Suzuki T, Kimura Y. Anti-inflammatory, anti-tumor-promoting, and cytotoxic activities of constituents of marigold (*Calendula officinalis*) flowers. *J Nat Prod* [Internet]. 2006;69(12):1692–6. Available from: <http://dx.doi.org/10.1021/np068016b>
12. 10a. Vella FM, Pignone D, Laratta B. The Mediterranean species *Calendula officinalis* and *Foeniculum vulgare* as valuable sources of bioactive compounds. *Molecules* [Internet]. 2024;29(15):3594. Available from: <http://dx.doi.org/10.3390/molecules29153594>
13. Ejiohuo O, Folami S, Maigoro AY. Calendula in modern medicine: advancements in wound healing and drug delivery applications. *Eur J Med Chem Rep* [Internet]. 2024;12:100199. Available from: <http://dx.doi.org/10.1016/j.ejmcr.2024.100199>
14. Orfali GDC, Duarte AC, Bonadio V, Martinez NP, de Araújo MEMB, Priviero FBM, et al. Review of anticancer mechanisms of isoquercitrin. *World J Clin Oncol* [Internet]. 2016;7(2):189–99. Available from: <http://dx.doi.org/10.5306/wjco.v7.i2.189>
15. Li X, Jiang Q, Wang T, Liu J, Chen D. Comparison of the antioxidant effects of quercitrin and isoquercitrin: understanding the role of the 6"-OH group. *Molecules* [Internet]. 2016;21(9):1246. Available from: <http://dx.doi.org/10.3390/molecules21091246>
16. Ganeshpurkar A, Saluja AK. The pharmacological potential of rutin. *Saudi Pharm J* [Internet]. 2017;25(2):149–64. Available from: <http://dx.doi.org/10.1016/j.jsps.2016.04.025>
17. Dong X, Li JJ, Ma N, Liu AZ, Liu JW. Anti-inflammatory and anti-oxidative effects of isorhamnetin for protection against lung injury in a rat model of heatstroke in a dry-heat environment. *Med Sci Monit* [Internet]. 2022;28:e935426. Available from: <http://dx.doi.org/10.12659/MSM.935426>
18. Gong G, Guan YY, Zhang ZL, Rahman K, Wang SJ, Zhou S, et al. Isorhamnetin: a review of pharmacological effects. *Biomed Pharmacother* [Internet]. 2020;128:110301. Available from: <http://dx.doi.org/10.1016/j.biopha.2020.110301>
19. Wang G, Wang Y, Yao L, Gu W, Zhao S, Shen Z, et al. Pharmacological activity of quercetin: an updated review. *Evid Based Complement Alternat Med* [Internet]. 2022;2022:3997190. Available from: <http://dx.doi.org/10.1155/2022/3997190>
20. 16a. Mirza MA, Mahmood S, Hilles AR, Ali A, Khan MZ, Zaidi SAA, et al. Quercetin as a therapeutic product: evaluation of its pharmacological action and clinical applications—a review. *Pharmaceuticals (Basel)* [Internet]. 2023;16(11):1631. Available from: <http://dx.doi.org/10.3390/ph16111631>
21. Wang H, Chen L, Yang B, Du J, Chen L, Li Y, et al. Structures, sources, identification/quantification methods, health benefits, bioaccessibility, and products of isorhamnetin glycosides as phytonutrients. *Nutrients* [Internet]. 2023;15(8):1947. Available from: <http://dx.doi.org/10.3390/nu15081947>
22. Gao XY, Li XY, Zhang CY, Bai CY. Scopoletin: a review of its pharmacology, pharmacokinetics, and toxicity. *Front Pharmacol* [Internet]. 2024;15:1268464. Available from: <http://dx.doi.org/10.3389/fphar.2024.1268464>
23. Parama D, Girisa S, Khatoon E, Kumar A, Alqahtani MS, Abbas M, et al. An overview of the pharmacological activities of scopoletin against different chronic diseases. *Pharmacol Res* [Internet]. 2022;179:106202. Available from: <http://dx.doi.org/10.1016/j.phrs.2022.106202>
24. Lin Z, Cheng X, Zheng H. Umbelliferone: a review of its pharmacology, toxicity and pharmacokinetics. *Inflammopharmacology* [Internet]. 2023;31(4):1731–50. Available from: <http://dx.doi.org/10.1007/s10787-023-01256-3>
25. Kim DY, Kang YH, Kang MK. Umbelliferone alleviates impaired wound healing and skin barrier dysfunction in high glucose-exposed dermal fibroblasts and diabetic skin. *J Mol Med (Berl)* [Internet]. 2024;102(12):1457–70. Available from: <http://dx.doi.org/10.1007/s00109-024-02491-z>
26. Cai T, Cai B. Pharmacological activities of esculetin and esculetin: a review. *Medicine (Baltimore)* [Internet]. 2023;102(40):e35306. Available from: <http://dx.doi.org/10.1097/MD.00000000000035306>
27. Tucker JM, Townsend DM. Alpha-tocopherol: roles in prevention and therapy of human disease. *Biomed Pharmacother* [Internet]. 2005;59(7):380–7. Available from: <http://dx.doi.org/10.1016/j.biopha.2005.06.005>
28. Liu M, Lu S. Plastoquinone and ubiquinone in plants: biosynthesis, physiological function and metabolic

engineering. *Front Plant Sci* [Internet]. 2016;7:1898. Available from: <http://dx.doi.org/10.3389/fpls.2016.01898>

29. Kieronska-Rudek A, Kij A, Kaczara P, Tworzydlo A, Napiorkowski M, Sidoryk K, et al. Exogenous vitamins K exert anti-inflammatory effects dissociated from their role as substrates for synthesis of endogenous MK-4 in murine macrophage cell line. *Cells* [Internet]. 2021;10(7):1571. Available from: <http://dx.doi.org/10.3390/cells10071571>

30. Sifuentes-Franco S, Sánchez-Macías DC, Carrillo-Ibarra S, Rivera-Valdés JJ, Zuñiga LY, Sánchez-López VA. Antioxidant and anti-inflammatory effects of coenzyme Q10 supplementation on infectious diseases. *Healthcare (Basel)* [Internet]. 2022;10(3):487. Available from: <http://dx.doi.org/10.3390/healthcare10030487>

31. George AV, Naik R, Rekha PD, Ramakrishnan AM, Surya V, Das S. Evaluation of oral administration of *Calendula officinalis* among the centesimal potencies in acute wound healing in male Wistar rats. *Indian J Res Homoeopathy*. 2025;19(3):291–303.

32. Khairnar MS, Pawar B, Marawar PP, Mani A. Evaluation of *Calendula officinalis* as an anti-plaque and anti-gingivitis agent. *J Indian Soc Periodontol*. 2013;17(6):741–7. doi:10.4103/0972-124X.124491

33. Sahay A, Dwiwedi A, Shaikh S. Comparative evaluation of the therapeutic potential of homeopathic preparation of *Calendula officinalis* mother tincture [Internet]. 2025. Available from: <http://dx.doi.org/10.2139/ssrn.5254841>

34. Pathak AP, Shah KB, Chakraborty G, Patel J. An in vitro comparative study of antibacterial activity of *Calendula officinalis* mother tincture and 30 potency.

35. Sharma DB, Aphale P, Gandhi V, Chitlange SS, Thomas A. Qualitative analysis of *Calendula officinalis* homeopathic mother tincture using high-performance thin layer chromatography. *Res J Pharm Technol* [Internet]. 2020;13(3):1113. Available from: <http://dx.doi.org/10.5958/0974-360X.2020.00204.8>

36. Bresler A, Hawkin D, Razlog R, Abrahamse H. Effect of low-level laser therapy and *Calendula officinalis* 3 CH on wound healing in human skin fibroblasts. *Am J Homeopath Med*. 2007;100(2).

37. Subramanian A. The effect of *Hydrastis canadensis* and *Calendula officinalis* homeopathic mother tincture complex on *Candida albicans*, in vitro.

38. Sharma HK, Dev D, Rajpal, Lamba CD, Thayal PK, Heema, et al. An analytical study to establish the role of *Calendula* Q as a topical wound dressing in partial-thickness burn wounds. *Indian J Burns* [Internet]. 2022;30(1):33–8. Available from: http://dx.doi.org/10.4103/ijb.ijb_14_22

39. Yalgi VS, Bhat KG. Antibacterial activity of homoeopathic tinctures on *Streptococcus mutans* and *Enterococcus faecalis*: an in vitro study. *J Clin Diagn Res* [Internet]. 2019. Available from: <http://dx.doi.org/10.7860/JCDR/2019/42190.13288>

How to Cite This Article

Sabitha NM, Agrawal S. Pharmacognostical, phytochemical and pharmacological profile of *Calendula officinalis* L.: A review. *International Journal of Homoeopathic Sciences*. 2026;10(1):163-167.

Creative Commons (CC) License

This is an open-access journal, and articles are distributed under the terms of the Creative Commons Attribution-Non Commercial-Share Alike 4.0 International (CC BY-NC-SA 4.0) License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.