

International Journal of Homoeopathic Sciences

E-ISSN: 2616-4493
 P-ISSN: 2616-4485
 Impact Factor (RJIF): 5.96
www.homoeopathicjournal.com
 IJHS 2026; 10(1): 385-388
 Received: 19-11-2025
 Accepted: 23-12-2025

Amutha WP
 Department of Homoeopathic Pharmacy, Sarada Krishna Homoeopathic Medical College, Affiliated to the Tamil Nadu Dr. MGR Medical University, Chennai, Kulasekharam, Kanniyakumari, Tamil Nadu, India

Aswin Anandh M
 Department of Homoeopathic Pharmacy, Sarada Krishna Homoeopathic Medical College, Affiliated to the Tamil Nadu Dr. MGR Medical University, Chennai, Kulasekharam, Kanniyakumari, Tamil Nadu, India

Sandhya SV
 Department of Homoeopathic Pharmacy, Sarada Krishna Homoeopathic Medical College, Affiliated to the Tamil Nadu Dr. MGR Medical University, Chennai, Kulasekharam, Kanniyakumari, Tamil Nadu, India

Sreeja S
 Professor and H.O.D
 Department of homoeopathic Pharmacy, Sarada Krishna Homoeopathic Medical College, Affiliated to the Tamil Nadu Dr. MGR Medical University, Chennai, Kulasekharam, Kanniyakumari, Tamil Nadu, India

Corresponding Author:
Amutha WP
 Department of Homoeopathic Pharmacy, Sarada Krishna Homoeopathic Medical College, Affiliated to the Tamil Nadu Dr. MGR Medical University, Chennai, Kulasekharam, Kanniyakumari, Tamil Nadu, India

A study on phytochemical analysis of homoeopathic mother tincture *Azadirachta indica*

Amutha WP, Aswin Anandh M, Sandhya SV and Sreeja S

DOI: <https://www.doi.org/10.33545/26164485.2026.v10.i1.F.2215>

Abstract

Medicinal plants play an important role in traditional and complementary systems of medicine due to their rich phytochemical composition and therapeutic potential. *Azadirachta indica* (Neem) is a well-known medicinal plant extensively used for its antidiabetic, antimicrobial, anti-inflammatory, and antioxidant properties. Homoeopathic mother tinctures prepared from medicinal plants retain biologically active phytoconstituents that contribute to their therapeutic efficacy. The present study aimed to qualitatively evaluate the phytochemical constituents present in homoeopathic mother tincture of *Azadirachta indica*. The mother tincture was subjected to standard qualitative phytochemical screening tests to detect the presence of major secondary metabolites such as alkaloids, glycosides, saponins, phytosterols, phenolic compounds, and tannins. The results revealed the presence of all the above-mentioned phytoconstituents in the tested mother tincture, indicating a rich phytochemical profile. The presence of these bioactive compounds may account for the wide range of pharmacological activities attributed to *Azadirachta indica* in homoeopathic practice. The findings provide scientific support for the traditional use of *Azadirachta indica* and emphasize the need for further quantitative and advanced analytical studies to explore its therapeutic potential.

Keywords: *Azadirachta indica*, neem, homoeopathy, mother tincture, phytochemical screening

Introduction

Medicinal plants constitute an important source of therapeutic agents in both traditional and modern healthcare systems due to their diverse phytochemical composition and wide range of biological activities [1]. *Azadirachta indica* A. Juss, commonly known as Neem, is a medicinal plant native to the Indian subcontinent and has been extensively used in Ayurveda, Unani, Siddha, and homoeopathic systems of medicine for the management of various ailments [2, 3]. Neem possesses several pharmacological properties including antidiabetic, antimicrobial, anti-inflammatory, antioxidant, antiviral, and anticancer activities, which have been attributed to the presence of bioactive constituents such as alkaloids, flavonoids, glycosides, tannins, saponins, and phytosterols [3-5]. Homoeopathic mother tinctures are hydroalcoholic extracts prepared from fresh plant material following standardized pharmacopeial methods and are known to retain therapeutically active phytochemicals responsible for medicinal action [6]. Phytochemical screening serves as an essential preliminary tool for the scientific validation of medicinal plant preparations and provides a foundation for further pharmacological and analytical investigations [7]. In this context, the present study was undertaken to qualitatively evaluate the phytochemical constituents present in homoeopathic mother tincture of *Azadirachta indica*.

Materials and Methods

Procurement of drug

Homoeopathic mother tincture of *Azadirachta indica* (Q) was commercially purchased from Willmar Schwabe India Pvt. Ltd.

Reagents used

Picric acid solution, Mayer's reagent, Dragendorff's reagent, iodine solution, sodium hydroxide solution, concentrated sulphuric acid, sulphur powder, and distilled water were used for phytochemical screening.

Qualitative phytochemical screening

Standard qualitative chemical tests were performed to identify the presence of major phytoconstituents in *Azadirachta indica* mother tincture following established protocols [9-11].

Test for alkaloids

Mayer's test: To a few ml of *Azadirachta indica* Q, two drops of Mayer's reagent are added along the sides of test tube. Appearance of white creamy precipitate indicates the presence of alkaloids [10].

Dragendroff test: To 5ml of *Azadirachta indica* Q, 2ml of HCl was added. Then 1 ml of Dragendroff's reagent was added an orange or red precipitate shows a positive result for alkaloids [11].

Iodine test: To 3ml of *Azadirachta indica* Q, few drops of iodine solution was added A blue colour, which disappears on boiling and reappears on cooling shows a positive result for alkaloids [12].

Picric acid test: To 3mL *Azadirachta indica* Q, Add 3-4 drops of 2% picric acid solution. An orange colour shows a positive result for alkaloids [15].

Test for saponin

Foam test: To few ml of *Azadirachta indica* Q add 2ml water and shake vigorously. The formation of stable foam

Results

Test for alkaloids

1. Picric acid test	An orange colour - present
2. Mayers test	A creamy white/yellow precipitate - Absent
3. Iodine test	A blue colour, which disappears on boiling and reappears on cooling - Absent
4. Dragendroff test	A reddish-brown precipitate - Present

Test for glycoside

Aqueous NaOH test	Yellow colour present
-------------------	-----------------------

for 10mins was taken as an indication for the presence of saponins [13].

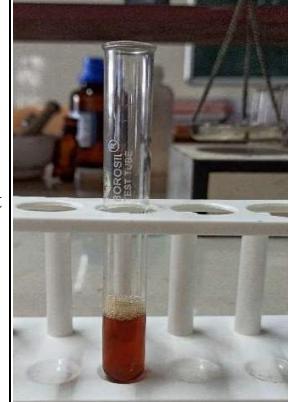
Test for glycoside

Aqueous Naoh test: To few ml of *Azadirachta indica* Q add 1ml of water and few drops of aqueous NaOH solution. A yellow colour indicates the presence of Glycoside [12].

Test for phytosterols

Salkowski's test: To few ml of *Azadirachta indica* Q, add few drops of conc. H_2SO_4 (Shaken well and allowed to stand). Red colour in lower layer indicates the presence of Phytosterols [14].

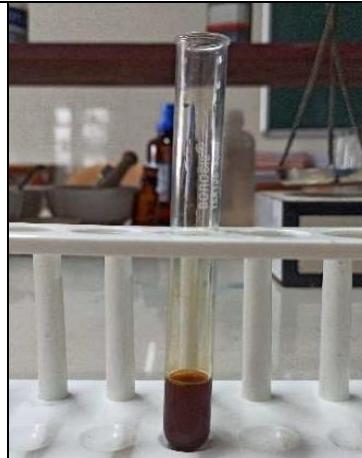
Sulphur test: To few ml of *Azadirachta indica* Q, Add a pinch of sulphur powder. Sulphur sinks to the bottom indicates the presence of Phytosterols [12].


Test for phenolic compounds

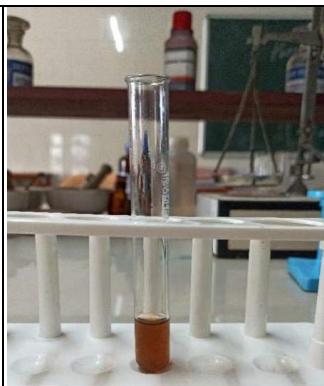
Iodine test: To 1ml of *Azadirachta indica* Q, Add few drops of dil. Iodine sol. A transient red colour indicates the presence of iodine test [12].

Test for tannins

10% Naoh test: To 0.4mL of *Azadirachta indica* Q, Add 4ml of 10% NaOH and shaken well. Formation of emulsion {Hydrolysable tannins}. Indicates the presence of iodine test [12].


Test for saponin

Foam test	Persistent foam for 10 min - Present	
-----------	--------------------------------------	--


Test for phytosterols

Salkowski's test	Red colour (in lower layer) - Present	
Sulphur test	Sulphur sinks to the bottom - Present	

Test for phenolic compounds

Iodine test	A transient red colour - Present	
-------------	----------------------------------	--

Test for tannins

10% NaOH test	Formation of emulsion {Hydrolysable tannins}	
---------------	--	--

The preliminary phytochemical tests performed were of qualitative type and from the phytochemical investigations it was observed that alkaloids, tannins, phenolic compounds, phytosterols, saponins, Glycoside were present in the *Azadirachta indica* Q.

Discussion

Neem (*Azadirachta indica*) elaborates a vast array of biologically active compounds which are structurally complex and chemically diverse. Every part of this plant is used as herb. During the past two decades, the chemical constituents and biological activities of *Azadirachta indica* were intensively investigated in both developing and developed countries. Several published studies revealed a lot of biological compounds [16]. From the preliminary phytochemical tests performed it was observed that alkaloids, tannins, phenolic compounds, phytosterols, saponins and Glycoside were present in the *Azadirachta indica* mother tincture. According to the Ani and Okolie (2018), the highest concentration of alkaloids %, flavonoids%, terpenoids %, saponins % was seen in the leaves of *A. indica* than the Stem-bark and root. Biu *et al.* (2009) reported that aqueous leaf extract of *A. indica* possesses higher amount of saponins and low quantity of alkaloid which corroboration with the result [17]. The TLC running with the hydro-alcoholic *A. indica* extract and pure standard flavonoids in co-chromatography indicated that astragalin, quercitrin, isoquercitrin, nicotiflorin and rutin were the only flavonoids found in the hydro-alcoholic extract among those screened [18]. On the basis of the LC-MS the known compounds, 10 compounds (4 terpenoids, 1 alkaloid, 2 flavonoids, 2 lignins, 1 saponin) were identified from 80% ethanolic extract of *Azadirachta indica* [19]. Two novel natural metabolites, 3-O-butyl-(-)-epicatechin and 3O-butyl-epigallocatechin, as well as several known substances, epicatechin, gallicatechin epigallocatechin, azadirachtin A, trilinolein and octadecanoic acid-tetrahydrofuran-3,4-diyI ester, were isolated from the bark of *Azadirachta indica* [20].

Conclusion

The result revealed the presence of phytoconstituents in *Azadirachta indica* mother tincture. Many earlier studies gathered which confirmed of phytochemicals to be bioactive. Further studies like Quantitative analysis, Chromatography techniques and GCMS Technique are to be conducted.

References

1. Islas JF, Acosta E, G-Buentello Z, Delgado-Gallegos JL, Moreno-Treviño MG, Escalante B, *et al.* An overview of Neem (*Azadirachta indica*) and its potential impact on health. *Journal of Functional Foods*. 2020 Nov;74(104171):104171.
2. Rehman T, Ahmad S. Evaluation of antibacterial and antioxidant potential of some homoeopathic mother tinctures. *Aohindiain*; 2019. Available from: <http://www.aohindia.in/jspui/handle/123456789/7446>
3. Biswas K, Chattopadhyay I, Banerjee RK, Bandyopadhyay U. Biological activities and medicinal properties of neem (*Azadirachta indica*). *Current Science [Internet]*. 2002;82(11):1336-1345. Available from: <https://www.jstor.org/stable/24106000>
4. Hashmat I, Azad H, Ahmed A. Neem (*Azadirachta indica* A. Juss)-A nature's drugstore: an overview. *Int Res J Biol Sci*. 2012 Oct;1(6):76-79.
5. Paul R, Prasad M, Sah NK. Anticancer biology of *Azadirachta indica* L (neem): a mini review. *Cancer biology & therapy*. 2011 Sep 15;12(6):467-476.
6. Nisbet AJ. Azadirachtin from the neem tree *Azadirachta indica*: its action against insects. *Anais da Sociedade Entomológica do Brasil*. 2000;29:615-632.
7. Atawodi SE, Atawodi JC. *Azadirachta indica* (neem): a plant of multiple biological and pharmacological activities. *Phytochemistry Reviews*. 2009 Sep 3;(3):601-620.
8. Maithani A, Parcha V, Pant G, Dhulia I, Kumar D. *Azadirachta indica* (neem) leaf: A review. *J Pharm Res*. 2011 Jun;4(6):1824-1827.
9. Lakshmi T, Krishnan V, Rajendran R, Madhusudhanan N. *Azadirachta indica*: A herbal panacea in dentistry- An update. *Pharmacognosy reviews*. 2015 Jan;9(17):41.
10. Banu KS, Cathrine L. General techniques involved in phytochemical analysis. *International journal of advanced research in chemical science*. 2015 Apr;2(4):25-32.
11. Balamurugan V, Fatima S, Velurajan S. A guide to phytochemical analysis. *International Journal of Advance Research and Innovative Ideas in Education*. 2019 Jan;5(1):236-245.
12. Shaikh JR, Patil M. Qualitative tests for preliminary phytochemical screening: An overview. *International Journal of Chemical Studies*. 2020 Mar 1;8(2):603-608.
13. Yadav RN, Agarwala M. Phytochemical analysis of some medicinal plants. *Journal of phytology*. 2011 Dec 14;3(12).
14. Patel P, Patel N, Patel D, Desai S, Meshram D. Phytochemical analysis and antifungal activity of *Moringa oleifera*. *International Journal of Pharmacy and Pharmaceutical Sciences*. 2014;6(5):144-147.
15. Vinoth B, Manivasagaperumal R, Rajaravindran M. Phytochemical analysis and antibacterial activity of *Azadirachta indica* A. Juss. *International journal of research in plant science*. 2012 Sep;2(3):50-55.
16. Eid A, Jaradat N, Elmarzugi N. A Review of chemical constituents and traditional usage of Neem plant (*Azadirachta indica*). *Palestinian Medical and Pharmaceutical Journal*. 2017;2(2):3.
17. Nwali ON, Idoko A, Okolie JE, Ezech E, Ugwuide PO, Rita ON, *et al.* Comparative analysis of the phytochemical compositions of leaf, stem-bark and root of *Azadirachta indica* (neem). *Universal Journal of Pharmaceutical Research*. 2018;3(5):46-50.
18. Vergallo C, Panzarini E, Dini L. High performance liquid chromatographic profiling of antioxidant and antidiabetic flavonoids purified from *Azadirachta indica* (neem) leaf ethanolic extract. *Pure and Applied Chemistry*. 2019 Oct 25;91(10):1631-1640.
19. Raissa R, Safitri A, Beltran MA, Aulanni'Am A. Phytoconstituents investigation on the ethanolic extract of *Azadirachta indica* var. Indonesian and Philippines. *InJournal of Physics: Conference Series* 2019 Nov 1 (Vol. 1374, No. 1, p. 012018). IOP Publishing.
20. V Cen-Pacheco F, Ortiz-Celiseo A. Studies on the bioactive flavonoids isolated from *Azadirachta indica*. *Natural product research*. 2020 Dec 16;34(24):3483-3491.

How to Cite This Article

Amutha WP, Aswin Anand M, Sandhya SV and Sreeja S. A study on phytochemical analysis of homoeopathic mother tincture *Azadirachta indica*. *International Journal of Homoeopathic Sciences*. 2026; 10(1): 385-388.

Creative Commons (CC) License

This is an open-access journal, and articles are distributed under the terms of the Creative Commons Attribution-Non Commercial-Share Alike 4.0 International (CC BY-NC-SA 4.0) License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.